欢迎来到专业的尚善文档网平台! 工作总结 工作计划 读后感 发言稿 心得体会 申请书大全 思想汇报 述职报告
当前位置:尚善文档网>作文大全 > 电力电气自动化元件技术的运用研究

电力电气自动化元件技术的运用研究

时间:2022-04-03 09:33:56 浏览量:

摘要:随着电力企业自动化、信息化技术的发展及电力市场的推进,采用更加先进的自动化控制技术及其产品,提高火电厂厂用电电气自动化运行和管理水平,节能降耗,增强企业竞争力,成为发电企业的热门课题。加强电力电气自动化元件的运用,是促进企业实现自动化生产的重要保障。本文通过介绍全控型电力电子开关、变换器电路、交流调速控制、变频器、单片机、集成电路及工业控制计算机的发展等方面的技术,论述电力电气化在电力系统中的运用。

关键词:电力电气;自动化元件;技术的运用

前言

随着市场化进程的不断加快,经济力量的迅速壮大,自动化的生产已经成为企业适应市场,并实现经济效益的可靠保证。电力电气的自动化程度是一个国家电力电子行业发展水平的一个重要标志,它是整个社会经济运行必不可少的技术手段。

1电气自动化元件技术在电力系统中应用的必要性

21世纪是一个网络信息时代,促进了社会经济的发展和人类社会的进步,同时增加了各行业的市场竞争,对各行业的技术水平要求提出了更高的要求。电力资源是人类必不可缺的重要资源之一,给电力行业带来了更大的生产压力,导致电力企业之间的竞争日益激烈。电力企业为了增强自身的市场竞争力,研发和引进了很多先进的科学技术,并将这些科学技术应用到日常生产运营中,进而完善了企业的生产模式,提高了企业的生产管理水平和产品的质量。其中对电气自动化元件技术的研发不仅提高了电力资源的质量和电力系统的安全运行,还大大降低了电力企业的生产成本及在生产中对环境的污染,减少了能源消耗量,促进了我国电力行业的健康发展。同时,经济全球化的发展,给我国市场经济带来了大量机遇的同时,还存在很多挑战。电力企业在生产和经营过程中,为了提高市场竞争力,促进企业的长远发展,就开始对电气自动化元件技术的研发和引进,这在很大程度上提高了电力行业的市场竞争力。可见,对电气自动化元件技术进行研发和应用是必要的。

2主要的电力电气自动化元件技术

随着电力电子技术、微电子技术沟迅猛发展,原有的电力传动(电子拖动)控制的概念已经不能充分概抓现代生产自动化系流中承担第一线任务的全部控制设备。它的研究对象已经发展为运动控制系统,下面仅对有关电气自动化技术的新发展作一些介绍。

2.1全控型电力电子开关逐步取代半控型晶闸管

20世纪50年代末出现的晶闸管标志着运动控制的新纪元。晶闸管是第一代电子电力器件,在我国,至今仍广泛用于直流和交流传动控制系统。由于目前所能生产的电流/电压定额和开关时间的不同,各种器件各有其应用范围。随着交流变频技术的兴起,全控式器件—GTR、GTO、P-MOSEFT 等相继出现了,这是第二代电力电子器件。GTR的二次击穿现象以及其安全工作区受各项参数影响而变化和热容量小、过流能力低等问题,使得人们把主要精力放在根据不同的特性设计出合适的保护电路和驱动电路上,这也使得电路比较复杂,难以掌握。GTO是一种用门极可关断的高压器件,它的主要缺点是关断增益低,一般为4.5,这就需要一个十分庞大的关断驱动电路。而且它的通态压降比普通晶闸管高,约为2~4.5V,开通di/dt和关断dv/dt也是限制GTO 推广运用的另一原因,前者约为500A/μs,后者约为500V/μs,这就需要一个庞大的吸收电路。功率MOSFET是一种电压驱动器件,基本上不要求稳定的驱动电流,驱动电路需要在器件开通时提供容性充电电流,而关断时提供放电电流即可,因此驱动电路很简单。IGBT是P-MOSFET工艺技术基础上的产物,它兼有MOSFET高输入阻抗、高速特性和GTR大电流密度特性的混合器件。其开关速度P-MOSFET低,但比GTR快;其通态电压降与GTR相似约为1.5~3.5V,比P-MOSFET 小得多,其关断存储时间和电流下降时间分别为为0.2~0.4μs和0.2~1.5μs,因而有较高的工作频率,它具有宽而稳定的安全个工作区,较高的效率,驱动电路简单等优点。

2.2变换器电路从低频向高频方向发展

电子器件的更新使得由它组成的变换器电路也相应的更新换代。电力电子器件的第二代,很多的是采用PWM变换器。采用PWM方式后,提高了功率因数,减少了高次谐波对电网的影响,解决了电动机在低频区的转矩脉动问题。由于PWM逆变器中的电压、电流的谐波分量产生的转矩脉动作用在定转子上,使电机绕组产生振动而发出噪声。开关损耗的存在限制了逆变器工作频率的提高。1986年美国威斯康星大学Divan教授提出谐振式直流环逆变器。传统的逆变器是挂在稳定的直流母线上,电力电子器件是在高电压下进行转换的“硬开关”,其开关损耗较大,限制了开关在频率上的提高。这样,可以使逆器尺寸减少,降低成本,还可能在较高功率上使逆变器集成化。因此,谐振式直流逆变器电路极有发展前途。

2.3交流调速控制理论日渐成熟

矢量控制的基本思想是仿照直流电动机的控制方式,把定子电流的磁场分量和转矩分量解耦开来,分别加以控制。实际上就是把异步电动机的物理模型设法等效地变换成类似于直流电动机的模式,这种等效变换是借助于坐标变换完成的。大致来说,直接转矩控制,用空间矢量的分析方法,直接在定子坐标系下分析计算与控制电流电动机的转矩。采用定子磁场定向,借助于离散的两点式调节Band-Band控制产生PwM信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。它省掉了复杂的矢量变换与电动数学模型的简化处理,大大减少了矢量控制中控制性能参数易受参数变化影响的问题。其控制思想新颖,控制结构简单,控制手段直接,信号处理物理概念明确,转矩响应迅速,限制在一拍之内,且无超调,是一种具有高静动态性能的新型交流调速方法。

2.4通用变频器开始大量投入实用

一般把系列化、批员化、占市场量最大的中小功率如400KVA以下的变频器称为通用变频器。从技术发展看,电力半导体器件有GTO、GTR、IGBT,但以后两种为主,尤以IGBT为发展趋势:支频器的可靠性、可维修性、可操作性即所谓的RAS功能也由于采用单片机控制动技术而得以提高。

2.5单片机、集成电路及工业控制计算机的发展

以MCS- 51代表的8位机虽然仍占主导地位,但功能简单,指令集短小,可靠性高,保密性高,适于大批量生产的PIC系列单片机及GMS97C。另外单片机的开发手段也更加丰富,除用汇编语言外,更多地是采用模块化的C语言、PL/M语言。

3结语

总之,计算机技术、信息技术、微电子技术为我国电气系统的自动化发展提供了科学的技术支撑,同时还提升了电气设备相关元件技术的应用水平,促进我国电气自动化系统整体水平的提升。全控式器件、高频变换器、通用变频器、集成电路、单片机的发展以及交流调速控制理论的不断成熟,标准这电气自动化元件技术的科学发展,而这些元件技术水平的提高,必然会促使电力企业生产自动化和智能化水平的提高。

参考文献:

[1]孟建伟.电力电气自动化元件技术的运用[J].科技创业家,2013(21)

[2]杨智文,蔡诗文.数字技术在电力电气自动化中的应用[J].电子技术与软件工程,2014(21)

[3]陈炯宇.浅谈电气自动化在电力系统中的应用[J].大科技·科技天地,2011(1)

[4]殷贇.电力电气自动化在电力工程中的应用初探[J].电子技术与软件工程,2014(15)

推荐访问: 元件 电力 电气自动化 研究 技术